Infectious diseases – approaches to prediction and the control of pandemics

Roy Anderson

Department of Infectious Disease Epidemiology
Faculty of Medicine,
Imperial College London

Antwerp Belgium – 25th March 2017
Origins of human infections

1) Inherited from our ancestors.
2) Acquired from wild life.
3) Acquired from livestock.

The fraction which are zoonotic estimated to be between 60-70%.

Livestock sometimes acquire infections from humans; such as strains of *Staphylococcus aureus* in chickens (Lowder et al, 2009; *PNAS* 106, 19545-50)
Human evolution

The diagram shows the timeline of human evolution from Australopithecus afarensis to Homo sapiens sapiens. Key species include:

- Australopithecus ramidus
- Australopithecus africanus
- Homo habilis
- Homo erectus
- Homo sapiens neandertalensis
- Homo sapiens sapiens

The timeline spans from 4.0 to 0 million years ago.
Genetic variation spectrum of human pathogens

Relatively homogeneous
Measles virus
Mumps virus
Rubella virus

Great heterogeneity
Bordetella
Dengue
Pneumococcal
RSV
Rotavirus
HPV
Influenza A & B
HIV
Malaria

Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London
Evolution continues - hybridization between animal and human pathogens
Chicken and Livestock densities on a global scale

Evolution continues – new infections constantly emerging – the schistosomes.

Bonnie L. Webster, Oumar T. Diaw, Mohmoudane M. Seye, Joanne P. Webster, David Rollinson (2013) Plos NTDs 7: 1-8

- Large-scale multi-loci molecular analysis of species of the *Schistosoma* genus with parasite samples collected from children and domestic livestock across Senegal revealed that interactions and hybridization were taking place between all species present in humans and livestock.

- Evidence of hybridization between *S. haematobium/S. curassoni* and *S. haematobium/S. bovis* was commonly found in children from across Senegal, with 88% of the children surveyed in areas of suspected species overlap excreting hybrid miracidia.

- Rodent experiments confirmed that males and females of each species readily pair and produce viable hybrid offspring.
Escherichia coli - % invasive isolates with resistance to fluoroguinolones 2009-10 (EU surveillance)
Changing world
World population growth by continent: past and predicted
Record of increasing travel over four male generations of the same family.

(A) Great-grandfather. (B) Grandfather. (C) Father. (D) Son. Each map shows in a simplified manner the individual’s ‘life-time tracks’ in a widening spatial context, with the linear scale increasing by a factor of 10 between each generation (Bradley, 1994 Geog. Ann. 76:91-104).
Air traffic flow – world picture - 2009
Human population density based on satellite imagery – influenza A spread

(18 months compressed into a few seconds)
Early spread of H1N1 based on analysis of sequence data

Jombart, Eggo, Dodd & Balloux [2009]
Re-assortment of bird and human influenza viruses

Less Developed Regions – Megacities (10 million plus)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Asia</td>
<td>2</td>
<td>10</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>Latin America</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

More Developed Regions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Japan</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>North America</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Recent events
Events - 2013-17

Measles epidemic in the UK - 2013

The media furore - started by a controversial paper published in the Lancet in 1998 (Wakefield et al) which raised fears about a link with autism (which has since been comprehensively discredited) - led to significant drop in MMR vaccine uptake.

Measles vaccination uptake (%)
Children immunised by age two, 2003-04 and 2011-12

Less than 60 60-69% 70-79% 80-89% 90-94% 95% and above

Measles cases rise
Laboratory confirmed cases of measles in England and Wales

Inter-epidemic period – 6 years, 5 years, 4 years.

Provisional data
Source: Health Protection Agency
Seasonal influenza vaccination impact was assessed with a transmission model. Vaccination substantially reduces disease burden. The current programme is cost-effective when the vaccine is well matched to strain circulating.

Conclusion

The 2012 seasonal influenza vaccination programme appears to substantially reduce disease burden and provides good value for money. 2014-15 flu vaccine was much less efficacious due to poor matching.
Ebola – 2013-15 outbreak - epidemiology

- Spread by direct contact with blood, bodily fluids or semen from infectious patient – or contaminated surfaces – no evidence of air borne transmission as yet – but this is a more transmissable strain than usual.
- Fever typically denotes infectiousness.
- Incubation period – 2-21 days (mean 8-10 days 2014; 12.7 days 2011 outbreak).
- Generation time – 10-12 days.
- Doubling time 4-5 days.
- R_0 is roughly 2-3.5 – each primary case generating 2 to 3 secondary cases over the first 35 weeks of the epidemic.
- Super-spreaders important
- Survival rate 47-50%
- Isolation of contacts – for 21 days post contact – use condoms for sexual partners.
The 2015-16 Ebola outbreak in West Africa

Total of 28,000 cases and 12,000 deaths in three countries Guinea, Liberia and Sierra Leone plus sparks in other countries such as the USA, Nigeria, Mali, Senegal, Italy, Spain and the UK.

Vaccine trials ended due to too few cases – but progress still being made in development of vaccines and trial design (ring vaccination) – with possible licensing in 2017 - Merck).
Emergence of Zika virus infection epidemic in S America - association with microcephaly in infants born to infected mothers confirmed in Feb 2016
Zika virus – distribution map – past and present 2016

Potential areas of risk in the USA
Bats as the origin of SARS

- Genome sequencing shows that the genome organization of all bat SARS-like–CoVs is almost identical to that of the SARS-CoVs isolated from humans or civets. They shared an overall sequence identity of 88% to 92%.

- (Lin-Fa Wang et al 2006, Emerging Infectious Diseases)
SARS and Influenza A - qPCR - patterns of viremia in patients [Peiris et al (2003), Hayden et al (1998)]

SARS CoV

Influenza A

Experimental human influenza A/Texas/36/91 (H1N1) intranasal inoculation 10^5 dose
HIV – evolution - multiple introductions into humans

Hahn et al (2002) (Gabon & Congo)
Incidence of malaria per 1000 head of population 2006 (WHO)

April 2015 - Lancet Malaria vaccine RTS,S Clinical Trials Partnership

Despite the falling efficacy over time, there is still a clear benefit from RTS,S/AS01. An average 1,363 cases of clinical malaria were prevented over 4 years of follow-up for every 1000 children vaccinated, and 1,774 cases in those who also received a booster shot. Over 3 years of follow-up, an average 558 cases were averted for every 1,000 infants vaccinated, and 983 cases in those also given a booster dose.”
Control of pandemics
The emergence of a new disease – urgent tasks

- **Indication** – unusual clusters of morbidity/mortality in space and time (e.g. SARS in Quangzhou – China, November 2002).
- Identify aetiological agent.
- Develop diagnostic tests.
- Determine route of transmission.
- Identify clinical algorithms for care – to reduce morbidity and mortality.
- Put in place, or activate, data capture and communication systems.
- Identify and implement key public health measures.
- Keep public informed.
Epidemic timescales

Rate of new infections

1. Establishment
2. Exponential growth
3. Endemicity

Stochastic effects

Equilibrium, or recurrent epidemics

\[y \approx \exp[(R_0 - 1)/T_G] \]
R for Mexico in April-May

(Fraser et al, 2009 Nature)

- \(R = 1.5 \) (95% Cr.I.: 1.2-1.9) from confirmed case epi curve.
- \(R = 1.4 \) (95% Cr.I.: 1.1-1.9) from spatial back-calculation.
- \(R = 1.2 \) (95% Cr.I.: 1.1-1.9) from sequence analysis.
Clear definition of control policy aims & objectives
Policy objectives?

1) Minimize morbidity and mortality – with fixed or variable budget.

2) Buy as much time as possible to wait for vaccine development.

3) Minimize duration of the epidemic and impact on economy.

4) Minimize peak prevalence below a defined level to avoid collapse of health care systems.
Influenza A simulations - England, Scotland and Wales (Ferguson et al, 2008)
Vaccine producing nations and world population distribution
The Neglected Tropical Diseases; *Ascaris lumbricoides* in the Pulicat villages in Tamil Nadu in India
Age-intensity profiles for mean intensity and prevalence (%) for the three major soil transmitted helminths.

Ascaris lumbricoides (worm burden)

Hookworm (eggs per gram)

Trichuris trichuria (eggs per gram)

Age group in years
Effect of treatment on the dynamics of infection intensity

In all scenarios yearly treatment is introduced for six yearly rounds. In the bounce-back scenario (black solid line), the treatment program is halted. If treatment is continued at two-yearly intervals (black dashed line) then intensity bounces back, but to lower levels. If the treatment coverage is slightly higher, and is high enough to cross the breakpoint within the 6 years of yearly treatment (gray line). Simulations for $k = 0.15$, $R_0 = 4.5$, $L = 1$ year, treatment coverage 75% (black lines) and 80% (gray line).
Conclusions

• New pathogen will emerge more frequently in the coming decades – better detection and continued evolution as our population expands, travels more and encroaches on natural wild life habitats.

• Modern medicine – can help solve problems ‘eventually’ but regulatory structure in emergencies needs changing.

• Developing a vaccine is not the barrier to control – it is creating the financial and logistical models for manufacture and distribution – for a possible ‘one off’ event.

• Influenza A presents the greatest threat at present of the known pathogens.
The End